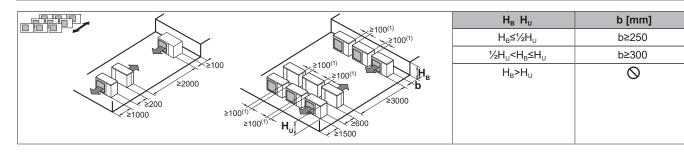
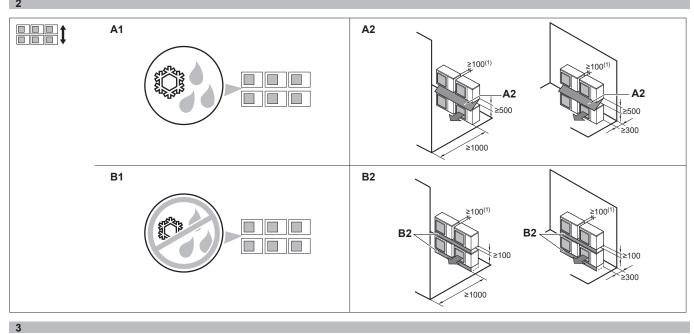


Руководство по монтажу

Sky Air Alpha-series




RZAG71N ▲ V1B ▼
RZAG100N ▲ V1B ▼
RZAG125N ▲ V1B ▼
RZAG140N ▲ V1B ▼

RZAG71N ▲ Y1B ▼
RZAG100N ▲ Y1B ▼
RZAG125N ▲ Y1B ▼
RZAG140N ▲ Y1B ▼

▲= 1, 2, 3, ..., 9 **▼**= , , 1, 2, 3, ..., 9

							[mm]			
	A~E	1	H _B H _D H _U		b	С	d	е	e _B	e _D
	В	_			≥100					
e _B	A, B, C	_		≥100 ⁽¹⁾	≥100	≥100				
,E	B, E	_			≥100			≥1000		≤500
e _D	A, B, C, E	_		≥150 ⁽¹⁾	≥150	≥150		≥1000		≤500
е	D	_					≥500			
	D, E	_					≥500	≥1000	≤500	
C	B, D	H _D >H _U			≥100		≥500			
C H _U b B H _B	H_	H _D ≤H _U			≥100		≥500			
	B, D, E	H _D >H _U	H _B ≤½H _U		≥250		≥750	≥1000	≤500	
			½H _U <h<sub>B≤H_U</h<sub>		≥250		≥1000	≥1000	≤500	
D d a			H _B >H _U				0			
H _D		H _D ≤H _U	H _D ≤½H _U		≥100		≥1000	≥1000		≤500
			½H _U <h<sub>D≤H_U</h<sub>		≥200		≥1000	≥1000		≤500
			H _D >H _U	0						
	A, B, C	_		≥200 ⁽¹⁾	≥300	≥1000				
e	A, B, C, E	_		≥200 ⁽¹⁾	≥300	≥1000		≥1000		≤500
S _B	D	_					≥1000			
e _D L	D, E	_					≥1000	≥1000	≤500	
е	B, D	H _D >H _U			≥300		≥1000			
		H _D ≤H _U	H _D ≤½H _U		≥250		≥1500			
H,, T ≥100 ⁽¹⁾			½H _U <h<sub>D≤H_U</h<sub>		≥300		≥1500			
c 100(1) b 100(1)	B, D, E	H _D >H _U	H _B ≤1/ ₂ H _U		≥300		≥1000	≥1000	≤500	
			1/ ₂ H _U <h<sub>B≤H_U</h<sub>		≥300		≥1250	≥1000	≤500	
d			H _B >H _U				0			
D		H _D ≤H _U	H _D ≤½H _U		≥250		≥1500	≥1000		≤500
H _D a	4		½H _U <h<sub>D≤H_U</h<sub>		≥300		≥1500	≥1000		≤500
			H _D >H _U				0			

Содержание

1	Инс	рорма	ация о настоящем документе	3
2	Mep	оы пр	едосторожности при монтаже	3
3	Инс	рорма	ация об упаковке	6
	3.1	Наруж	ный агрегат	6
		3.1.1	Для снятия аксессуаров с наружного агрегата	6
4	Под	ТОТОЕ	вка	6
-	4.1	•	овка места установки	6
		4.1.1	Требования к месту установки наружного агрегата	6
5	Moi	нтаж	aiperara	7
	5.1		ж наружного агрегата	7
	0	5.1.1	Подготовка конструкции для установки	7
		5.1.2	Установка наружного агрегата	7
		5.1.3	Обеспечение слива воды	7
		5.1.4	Чтобы избежать опрокидывания наружного агрегата	8
	5.2	Полсое	единение трубопроводов хладагента	
	0.2	5.2.1	Подсоединение трубопровода хладагента к	
		0.2	наружному блоку	8
	5.3	Прове	рка трубопровода хладагента	10
		5.3.1	Проверка трубопровода хладагента: Компоновка .	10
		5.3.2	Проверка на утечки	10
		5.3.3	Порядок выполнения вакуумной осушки	10
	5.4	Заправ	вка хладагентом	10
		5.4.1	Заправка хладагентом	10
		5.4.2	О хладагенте	11
		5.4.3	Меры предосторожности при заправке хладагента	12
		5.4.4	Обозначения: L1~L7, H1, H2	12
		5.4.5	Дозаправка хладагентом	12
		5.4.6	Полная перезаправка хладагентом	13
		5.4.7	Нанесение этикетки с информацией о	
			фторированных газах, способствующих	
		Полити	парниковому эффекту	
	5.5	тюдки 5.5.1	очение электропроводкиСоблюдение электрических нормативов	15
		5.5.2	Рекомендации по подсоединению	15
			электропроводки	15
		5.5.3	Характеристики стандартных элементов электрических соединений	15
		5.5.4	Подсоединение электропроводки к наружному агрегату	15
	5.6	Заверь	шение монтажа наружного агрегата	17
		5.6.1	Завершение монтажа наружного блока	17
		5.6.2	Проверка сопротивления изоляции компрессора	17
6			падочные работы	17
	6.1		усковые проверочные операции	17
	6.2		ок выполнения пробного запуска	18
	6.3		боя при выполнении пробного запуска	19
	6.4		ые настройки специально для технического дения	19
7	Ути	лизац	ния	19
8	Tex	ничес	ские данные	20
	8.1	Свобо	дное место для техобслуживания: Наружный блок	20
	8.2	Схема	трубопроводов: Наружный агрегат	21
	8.3	Электр	рическая схема: наружный агрегат	21

1 Информация о настоящем документе

Целевая аудитория

Уполномоченные установщики

ИНФОРМАЦИЯ

Данное устройство может использоваться специалистами или обученными пользователями в магазинах, на предприятиях легкой промышленности, на фермах, либо неспециалистами для коммерческих нужд.

Комплект документации

Настоящий документ является частью комплекта документации. В полный комплект входит следующее:

- Общие правила техники безопасности:
 - Меры предосторожности, с которыми НЕОБХОДИМО ознакомиться, прежде чем приступать к монтажу
 - Формат: документ (в ящике с наружным блоком)
- Руководство по монтажу наружного блока:
 - Инструкции по монтажу
 - Формат: документ (в ящике с наружным блоком)
- Справочное руководство для монтажника:
 - Подготовка к монтажу, справочная информация, ...
 - Вид: файлы на веб-странице https://www.daikin.eu. Для поиска нужной модели используйте функцию поиска Q.

Прилагаемая документация в самой свежей редакции публикуется на региональном веб-сайте Daikin и предоставляется продавцом оборудования.

Оригинал руководства составлен на английском языке. Текст на остальных языках является переводом с оригинала.

Инженерно-технические данные

- Подборка самых свежих технических данных размещена на региональном веб-сайте Daikin (в открытом доступе).
- Полные технические данные в самой свежей редакции размещаются на интернет-портале Daikin Business Portal (требуется авторизация).

2 Меры предосторожности при монтаже

Изложенные далее указания и меры предосторожности обязательны к соблюдению.

Место установки оборудования (см. раздел «4.1 Подготовка места установки» [▶ 6])

ВНИМАНИЕ!

При монтаже обеспечьте указанные в этом руководстве размеры зоны обслуживания. См. раздел «8.1 Свободное место для техобслуживания: Наружный блок» [• 20].

ВНИМАНИЕ!

Полиэтиленовые упаковочные мешки необходимо разрывать и выбрасывать, чтобы дети не могли ими играть. Возможное следствие: удушение.

осторожно!

Данный аппарат HE предназначен для широкого пользования, установку необходимо выполнить в защищенном месте, исключающем легкий доступ.

Эта система, состоящая из внутренних и наружных блоков, предназначена для установки в коммерческих и промышленных зданиях.

осторожно!

Данное оборудование НЕ предназначено к эксплуатации в жилых помещениях, а надлежащая защита радиоприема в таких помещениях НЕ гарантируется.

осторожно!

Избыточная концентрация хладагента в закрытом помещении может привести к недостатку кислорода.

ВНИМАНИЕ!

Площадь помещения, где устанавливается, эксплуатируется и хранится оборудование, содержащее хладагент R32, ДОЛЖНА превышать минимальную площадь (м²), указанную ниже в таблице A. Это распространяется на:

- внутренние блоки **без** датчика протечки хладагента, если же внутренний блок **оснащен** датчиком протечки хладагента, см. руководство по монтажу
- наружные блоки, смонтированные или хранящиеся в помещениях (напр., в зимнем саду, гараже или машинном зале)

ВНИМАНИЕ!

Если одно или несколько помещений соединены с блоком через систему трубопроводов, проследите за соблюдением изложенных далее условий:

- полное отсутствие источников возгорания (напр., открытого огня, работающих газовых приборов или электрообогревателей), если площадь помещения не достигает минимально допустимой величины А (м²);
- отсутствие в составе системы трубопроводов вспомогательного оборудования, способного привести к самовозгоранию (напр., поверхностей, нагревающихся до температуры свыше 700°С, или электрических выключателей);
- использование в системе трубопроводов только такого вспомогательного оборудования, которое одобрено изготовителем;
- воздухозаборник И выпускное отверстие напрямую соединены трубопроводами с помещением.
 НЕЛЬЗЯ прокладывать трубопроводы от воздухозаборника или выпускного отверстия в пустотах, например, в подвесном потолке.

Открывание блока

ОПАСНО! ОПАСНОСТЬ ВОЗГОРАНИЯ ИЛИ ОЖОГА

ОПАСНО! ОПАСНОСТЬ ЭЛЕКТРИЧЕСКИМ ТОКОМ поражения

ОПАСНО! ОПАСНОСТЬ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

HE оставляйте агрегат без присмотра со снятой сервисной панелью.

Монтаж наружного блока (см. раздел «5.1 Монтаж наружного агрегата» [▶ 7])

ВНИМАНИЕ!

Способ фиксации наружного агрегата ДОЛЖЕН соответствовать инструкциям, представленным в этом руководстве. См. раздел «5.1 Монтаж наружного агрегата» [▶ 7].

Подсоединение трубопроводов хладагента (см. раздел «5.2 Подсоединение трубопроводов хладагента» [▶8])

ВНИМАНИЕ!

Трубопроводы необходимо прокладывать по месту установки оборудования в СТРОГОМ соответствии с указаниями, изложенными в этом руководстве. См. раздел «5.2 Подсоединение трубопроводов хладагента» [• 8].

осторожно!

- НЕ применяйте на развальцованной детали минеральное масло.
- НЕ используйте повторно трубки от прошлых установок.
- На блоки с хладагентом НЕЛЬЗЯ устанавливать осушители, которые могут существенно сократить срок службы блоков. Осушающий материал может расплавить и повредить систему.

осторожно!

Трубопровод хладагента и его элементы монтируются в таком положении, в котором они не подвергаются воздействию вызывающих коррозию веществ, если только конструкционные элементы, содержащие хладагент, не изготовлены из коррозионно-стойких материалов или не защищены подходящим способом от коррозии.

ВНИМАНИЕ!

В случае утечки хладагента примите надлежащие меры предосторожности. Если происходит утечка хладагента, немедленно проветрите помещение. Возможные риски:

- Избыточная концентрация хладагента в закрытом помещении может привести к недостатку кислорода.
- Контакт паров хладагента с огнем может привести к выделению ядовитого газа.

ВНИМАНИЕ!

Использованный хладагент НЕОБХОДИМО собрать. ЗАПРЕЩАЕТСЯ сбрасывать хладагент непосредственно в окружающую среду. Воспользуйтесь вакуумным насосом для вакуумирования системы.

ВНИМАНИЕ!

При испытаниях НЕ допускается превышение предельно допустимого давления (указанного в паспортной табличке блока).

осторожно!

НЕ допускайте выбросов газа в атмосферу.

ВНИМАНИЕ!

Газообразный хладагент и масло, оставшееся внутри запорного клапана, могут разорвать пережатые трубки.

Ненадлежащее выполнение указаний в изложенном далее порядке может привести к повреждению имущества и травмам, в том числе тяжелым.

ВНИМАНИЕ!

Ни в коем случае НЕ удаляйте пережатые участки трубок посредством пайки.

Газообразный хладагент и масло, оставшееся внутри запорного клапана, могут разорвать пережатые трубки.

Заправка хладагентом (см. раздел «5.4 Заправка хладагентом» [▶ 10])

ВНИМАНИЕ!

- Хладагент в блоке умеренно горюч и обычно НЕ вытекает. В случае утечки в помещении контакт хладагента с пламенем горелки, нагревателем или кухонной плитой может привести к возгоранию или образованию вредного газа.
- Отключив все огнеопасные нагревательные устройства и проветрив помещение, свяжитесь с продавцом блока.
- НЕ пользуйтесь блоком до тех пор, пока специалист сервисной службы не подтвердит восстановление исправности узлов, в которых произошла утечка хладагента.

ВНИМАНИЕ!

Заправка хладагентом производится в СТРОГОМ соответствии с указаниями, изложенными в этом руководстве. См. раздел «5.4 Заправка хладагентом»

ВНИМАНИЕ!

- Пользуйтесь только хладагентом R32. Другие вещества могут вызвать взрывы и несчастные случаи.
- Хладагент R32 содержит фторированные парниковые газы. Значение потенциала глобального потепления (GWP) составляет 675. HE выпускайте эти газы в атмосферу.
- При ОБЯЗАТЕЛЬНО заправке хладагентом надевайте защитные перчатки и очки

Монтаж электрических компонентов (см. раздел «5.5 Подключение электропроводки» [▶ 15])

ВНИМАНИЕ!

Электропроводка подсоединяется СТРОГОМ В соответствии с указаниями, изложенными

- руководстве. См. параграф «5.5 Подключение электропроводки» [▶ 15].
- Схема электропроводки, входящая в комплект поставки наружного блока, находится внутренней стороне верхней панели. Перевод пояснений к условным обозначениям см. в разделе «8.3 Электрическая схема: наружный агрегат» [21].

осторожно!

НЕ вводите и не размещайте в блоке дополнительную длину кабеля.

ВНИМАНИЕ!

- Если в электропитании нет нейтрали или она не соответствует нормативам, оборудование может выйти из строя.
- Необходимо установить надлежащее заземление. НЕ ДОПУСКАЕТСЯ заземление агрегата на разрядник и трубопровод инженерных сетей. заземление телефонных линий. Ненадежное заземпение может привести к поражению электрическим током.
- Установите необходимые предохранители автоматические прерыватели.
- Обязательно прикрепляйте электропроводку с помощью кабельных стяжек так, чтобы провод НЕ касался острых кромок труб, особенно на стороне высокого давления.
- допускается использование проводки с HF отводами, удлинительных проводов и соединений звездой. Они могут вызвать перегрев, поражение электрическим током или возгорание.
- НЕ допускается установка фазокомпенсационного конденсатора, так как агрегат оборудован инвертором. Фазокомпенсационный конденсатор снижает производительность и может вызвать несчастные случаи.

ВНИМАНИЕ!

- К прокладке электропроводки допускаются ТОЛЬКО аттестованные электрики в СТРОГОМ соответствии с общегосударственными нормативами прокладки электропроводки.
- Электрические соединения подключаются стационарной проводке.
- Все электрическое оборудование и материалы, приобретаемые по месту монтажа, ДОЛЖНЫ соответствовать требованиям действующего законодательства.

! ВНИМАНИЕ!

Во избежание опасности замена поврежденного кабеля электропитания производится ТОЛЬКО изготовителем, сотрудником сервисной службы или иным квалифицированным специалистом.

ВНИМАНИЕ!

Пользуйтесь ТОЛЬКО многожильными кабелями электропитания.

RZAG71~140N Sky Air Alpha-series 4P695306-1B - 2024.02

осторожно!

- При подсоединении электропитания сначала необходимо подсоединить кабель заземления, а затем выполнить токоподводящие соединения.
- При отсоединении электропитания сначала необходимо отсоединить токоподводящие соединения, а затем – соединение с землей.
- Длина проводов креплением между электропроводки питания и самой клеммной быть такой, колодкой ДОЛЖНА токоподводящие провода натягивались прежде чем окажется натянут провод заземления в случае электропроводки питания ослаблении ее крепления.

Пусконаладочные работы (см. раздел «6 Пусконаладочные работы» [• 17])

ВНИМАНИЕ!

Ввод в эксплуатацию должен СТРОГО соответствовать указаниям, изложенным в этом руководстве. См. раздел «6 Пусконаладочные работы» [▶ 17].

осторожно!

HE выполняйте пробный запуск во время проведения работ с внутренними блоками.

Во время пробного запуска будет работать НЕ ТОЛЬКО наружный блок, но и подключенные к нему внутренние блоки. Работать с внутренним блоком при выполнении пробного запуска опасно.

осторожно!

НЕ вставляйте пальцы, а также палки и другие предметы в отверстия для забора и выпуска воздуха. НЕ снимайте решетку вентилятора. Когда вентилятор вращается на высокой скорости, это может привести к травме.

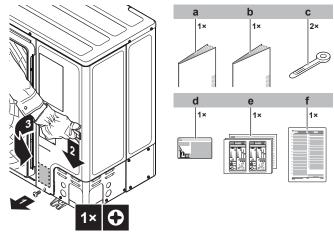
Поиск и устранение неполадок

ВНИМАНИЕ!

- Перед проведением проверки распределительной коробки блока ОБЯЗАТЕЛЬНО проследите за тем, чтобы блок был отключен от сети. Выключите соответствующий автоматический выключатель.
- Если сработало защитное устройство, отключите блок от сети электропитания и найдите причину срабатывания защиты, только после этого можно возвращать устройство в исходное состояние. НИКОГДА не закорачивайте защитные устройства и не меняйте их заводские настройки, заданные по умолчанию. При невозможности установить причину проблемы обратитесь к дилеру.

ВНИМАНИЕ!

Во избежание опасности из-за непреднамеренного сброса термовыключателя, данное устройство НЕЛЬЗЯ подключать к внешнему переключателю (например, к таймеру) или к цепи, которая регулярно включается и выключается устройством.


3 Информация об упаковке

Соблюдайте следующие рекомендации:

- Непосредственно после доставки блок ОБЯЗАТЕЛЬНО нужно проверить на предмет повреждений и на укомплектованность.
 Обо всех повреждениях и о нехватке тех или иных деталей НЕОБХОДИМО сразу же поставить в известность представителя компании-перевозчика.
- Старайтесь доставить агрегат как можно ближе к месту монтажа, не извлекая его из упаковки — это сведет к минимуму вероятность механических повреждений при транспортировке.
- Заранее наметьте путь транспортировки блока в месту окончательной установки.

3.1 Наружный агрегат

3.1.1 Для снятия аксессуаров с наружного агрегата

- а Общие правила техники безопасности
- в Руководство по монтажу наружного блока
- с Кабельная стяжка
- d Этикетка с информацией о фторированных газах, способствующих парниковому эффекту
- Спосооствующих парниковому эфф
 Маркировка энергоэффективности
- f Приложение (LOT21)

4 Подготовка

4.1 Подготовка места установки

ВНИМАНИЕ!

Оборудование размещается в помещении без постоянно действующих источников возгорания (напр., открытого огня, оборудования, работающего на газе, или действующих электрообогревателей).

4.1.1 Требования к месту установки наружного агрегата

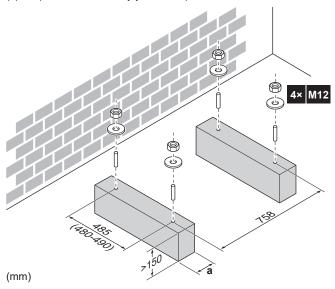
Соблюдайте правила организации пространства. См. раздел «Технические данные» и численные параметры на внутренней стороне передней крышки.

ИНФОРМАЦИЯ

Уровень звукового давления не должен достигать 70 дБА.

осторожно!

Свободный доступ к аппарату ДОЛЖЕН быть закрыт. Монтаж выполняется в защищенном месте, исключающем легкий доступ.

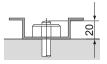

Данный блок подходит для установки в коммерческих и промышленных зданиях.

5 Монтаж

5.1 Монтаж наружного агрегата

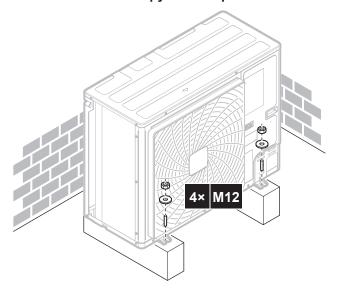
5.1.1 Подготовка конструкции для установки

Подготовьте 4 комплекта анкерных болтов, гаек и шайб (приобретаются по месту установки), а именно:



 Следите за тем, чтобы сливные отверстия в поддоне блока не оказались перекрытыми.

Рекомендуемая высота верхней выступающей части болтов составляет 20 мм.



ОБРАТИТЕ ВНИМАНИЕ

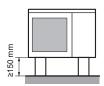
Прикрепите наружный блок к монтажным болтам гайками с полимерными шайбами (а). Если место крепления останется без покрытия, металл может быстро покрыться ржавчиной.

5.1.2 Установка наружного агрегата

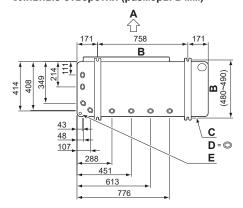
5.1.3 Обеспечение слива воды

ИНФОРМАЦИЯ

При необходимости допускается использовать дренажный поддон (приобретается по месту установки), чтобы предотвратить падение капель дренажной воды.


ОБРАТИТЕ ВНИМАНИЕ

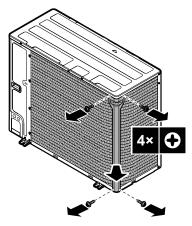
Если устройство НЕВОЗМОЖНО установить абсолютно горизонтально, необходимо обеспечить наклон к задней стороне агрегата. Это необходимо для обеспечения надлежащего дренажа.



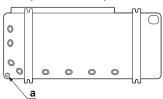
ОБРАТИТЕ ВНИМАНИЕ

Если дренажные отверстия наружного блока перекрыты основанием для монтажа или поверхностью пола, поднимите наружный блок, чтобы под ним оставалось не менее 150 мм свободного пространства.

Сливные отверстия (размеры в мм)



- A Сторона выброса воздуха
- В Расстояние между точками крепления
- С Нижняя рама
- **D** Сливные отверстия
- **E** Выбивное отверстие для снега


Снег

В местности, где часто бывает снегопад, возможно скопление снега и образование наледи в промежутке между теплообменником и корпусом блока. Это снижает эффективность работы оборудования. Как этого избежать:

1 Снимите балочную конструкцию (см. иллюстрацию внизу).

 Высвободите выбивное отверстие (а), удаляя точки крепления отверткой с плоским лезвием и молотком.

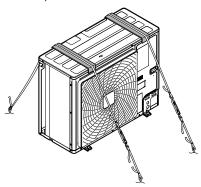
3 Убрав заусенцы, покрасьте края отверстия и прилегающие к ним участки восстановительной краской во избежание ржавления.

ОБРАТИТЕ ВНИМАНИЕ

Проделывая выбивные отверстия, соблюдайте меры предосторожности:

- Старайтесь не повредить корпус и трубопроводы под ним.
- После того, как выбивные отверстия проделаны, рекомендуется убрать заусенцы, а также покрасить края отверстий и прилегающие участки восстановительной краской во избежание образования ржавчины.
- Проводя через выбивные отверстия электрические провода, оборачивайте их защитной лентой во избежание повреждения.

информация

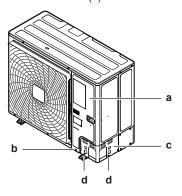

Если блок монтируется в местности с холодным климатом, рекомендуется установить дополнительный подогреватель поддона (EKBPH140N7).

5.1.4 Чтобы избежать опрокидывания наружного агрегата

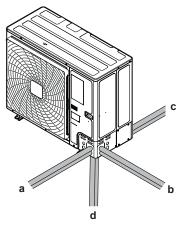
В случае установки блока в местах, где сильный ветер может его наклонить, необходимо принять следующие меры:

- Подготовьте 2 кабеля, как показано на следующей иллюстрации (приобретаются по месту установки).
- 2 Положите 2 кабеля на наружный блок.
- 3 Чтобы кабели не поцарапали краску, уложите между кабелями и наружным блоком лист резины (приобретается по месту установки).

- 4 Подсоедините концы кабелей.
- 5 Закрепите кабели.



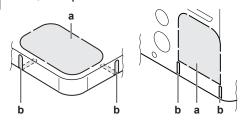
5.2 Подсоединение трубопроводов хладагента


ОПАСНО! ОПАСНОСТЬ ВОЗГОРАНИЯ ИЛИ ОЖОГА

5.2.1 Подсоединение трубопровода хладагента к наружному блоку

- Длина трубопроводов. Трубопроводы по месту монтажа должны быть как можно короче.
- Защита трубопроводов. Необходимо обеспечить защиту трубопроводов по месту монтажа от физического повреждения.
- 1 Сделайте следующее:
 - Снимите сервисную крышку (a) с винтом (b).
 - Снимите крышку входного отверстия трубопровода (c) с винтами (d).

2 Наметьте схему прокладки трубопровода (a, b, c или d).

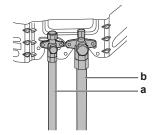


- а Передняя часть
 - о Сбоку
- с Сзади

d Снизу

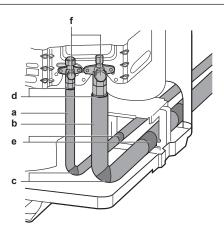
ИНФОРМАЦИЯ

- Вскройте выбивное отверстие (а) в поддоне или крышке ударами молотком по отвертке с плоским лезвием в точках крепления.
- Кромки (b) можно срезать ножовкой.


ОБРАТИТЕ ВНИМАНИЕ

Проделывая выбивные отверстия, соблюдайте меры предосторожности:

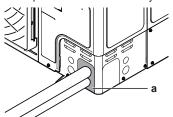
- Старайтесь не повредить корпус и трубопроводы под ним.
- После того, как выбивные отверстия проделаны, рекомендуется убрать заусенцы, а также покрасить края отверстий и прилегающие участки восстановительной краской во избежание образования ржавчины.
- Проводя через выбивные отверстия электрические провода, оборачивайте их защитной лентой во избежание повреждения.


3 Сделайте следующее:

- Подсоедините запорный вентиль к трубопроводу жидкого хладагента (а).
- Подсоедините запорный вентиль к трубопроводу газообразного хладагента (b).

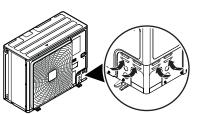
4 Сделайте следующее:

- Заизолируйте трубопроводы жидкого (а) и газообразного (b) хладагентов.
- Намотав на изгибы теплоизоляционный материал, покройте его виниловой лентой (с).
- Проследите за тем, чтобы трубки нигде не соприкасались с деталями компрессора.
- Плотно заделайте концы изоляции (герметиком и т.п.) (d).
- Оберните трубопроводы, проложенные по месту установки, виниловой пленкой (е) для защиты от острых краев.


5 Если наружный блок установлен выше внутреннего, закройте запорные клапаны (см. [f] выше) герметичным материалом во избежание просачивания конденсата с запорных клапанов во внутренний блок.

ОБРАТИТЕ ВНИМАНИЕ

Любые открытые трубки подвержены образованию конденсата.


- 6 Установите на место сервисную крышку и крышку входного отверстия трубопровода.
- 7 Плотно заделайте все зазоры (по образцу а) во избежание проникновения в систему снега и насекомых.

ОБРАТИТЕ ВНИМАНИЕ

Не перекрывайте вентиляционные отверстия. Это может воспрепятствовать циркуляции воздуха внутри блока.

ВНИМАНИЕ!

Примите надлежащие меры к предотвращению использования блока насекомыми в качестве пристанища. Соприкосновение насекомых с электрическими деталями может привести к сбоям в работе блока, задымлению или возгоранию.

ОБРАТИТЕ ВНИМАНИЕ

Не забудьте открыть запорные клапаны после прокладки трубопроводов хладагента и выполнения вакуумной осушки. Запуск системы с перекрытыми стопорными клапанами может привести к поломке компрессора.

5.3 Проверка трубопровода хладагента

5.3.1 Проверка трубопровода хладагента: Компоновка

- Спаренная компоновка
- В Двойная компоновка
- Манометр
- b Азот
- c d Хладагент
- Весы
- Вакуумный насос
- Запорный вентиль
- Главный трубопровод
- Комплект для разветвления трубопроводов хладагента
- Ответвление

5.3.2 Проверка на утечки

ОБРАТИТЕ ВНИМАНИЕ

НЕ превышайте максимальное рабочее давление блока (см. параметр PS High на паспортной табличке блока).

- Заправьте систему азотом до давления не менее 200 кПа бар). Для выявления незначительных рекомендуется довести давление до 3000 кПа (30 бар).
- Проверьте систему на герметичность, нанеся раствор для проведения пробы на образование пузырей на все трубные соединения.

ОБРАТИТЕ ВНИМАНИЕ

ОБЯЗАТЕЛЬНО используйте рекомендованный поставщиком раствор для проведения проверки на образование пузырей.

Ни в коем случае НЕ пользуйтесь мыльным раствором:

- Мыльный раствор может привести к образованию трещин в таких деталях, как, например, накидные гайки или колпачки запорных вентилей.
- В мыльном растворе может содержаться соль, которая впитывает влагу, замерзающую при охлаждении трубопроводов.
- Аммиак, содержащийся в мыльном растворе, может вызывать коррозию в местах пайки трубопроводов (между латунной накидной гайкой и медной развальцованной трубкой).
- Выпустите весь азот.

5.3.3 Порядок выполнения вакуумной осушки

ОБРАТИТЕ ВНИМАНИЕ

- Для повышения производительности подключите вакуумный насос к обеим точкам: сервисному отверстию газового запорного клапана и запорному клапану жидкого хладагента.
- Перед проведением проверки на герметичность и вакуумной осушки убедитесь в том, что запорные клапаны в контурах газообразного и жидкого хладагента плотно перекрыты.
- Вакуумируйте систему до тех пор, пока давление в коллекторе не составит -0,1 МПа (-1 бар).
- Оставив систему в покое на 4-5 минут, проверьте давление:

Если давление	то
Не меняется	В системе отсутствует влага.
	Операция завершена.
Повышается	В системе присутствует
	влага. Переходите к
	следующему действию.

- Откачивайте из системы воздух, как минимум, в течение 2 часов до тех пор, пока в трубопроводе не установится контрольное давление -0,1 МПа (-1 бар).
- После выключения насоса проверяйте давление, как минимум, в течение 1 часа.
- Если необходимая глубина вакуума НЕ была достигнута или вакуум НЕ удерживался в течение 1 часа, сделайте следующее:
 - Проверьте на герметичность еще раз.
 - Проведите еще раз вакуумную осушку.

ОБРАТИТЕ ВНИМАНИЕ

забудьте открыть запорные клапаны после прокладки трубопроводов хладагента и выполнения вакуумной осушки. Запуск системы с перекрытыми стопорными клапанами может привести к поломке компрессора.

5.4 Заправка хладагентом

5.4.1 Заправка хладагентом

блоки поставляются с заводской заправкой Наружные хладагентом, но иногда требуется выполнить следующие действия:

Что?	Когда?
Дозаправка хладагентом	Если общая длина трубопровода жидкого хладагента превышает указанную (см. далее).
Полная перезаправка хладагентом	Пример: При переустановке системы. После протечки.

Дозаправка хладагентом

Перед дозаправкой хладагентом обязательно выполните (на герметичность, с вакуумной осушкой) трубопроводов хладагента, проложенных снаружи наружного блока.

ИНФОРМАЦИЯ

В зависимости от блоков и (или) условий их установки бывает, что прокладку электропроводки необходимо выполнить до заправки системы хладагентом.

Дозаправка хладагентом, как правило, подразделяется на следующие этапы:

- Определение необходимости дозаправки и количества дополнительного хладагента.
- 2 Выполнение дозаправки, если в ней есть необходимость.
- 3 Крепление внутри наружного блока заполненной таблички с информацией о фторированных газах, способствующих парниковому эффекту.

Полная перезаправка хладагентом

Прежде чем приступать к полной перезаправке системы хладагентом, проверьте, соблюдены ли следующие условия:

- 1 Весь хладагент удален из системы.
- 2 Выполнена проверка (на герметичность, с вакуумной осушкой) трубопроводов хладагента, проложенных снаружи наружного блока.
- Выполнена вакуумная осушка трубопроводов хладагента, проложенных внутри наружного блока.

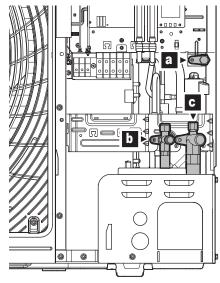
ОБРАТИТЕ ВНИМАНИЕ

Перед полной перезарядкой также выполните вакуумную сушку **внутренних** трубопроводов хладагента наружного агрегата.

ОБРАТИТЕ ВНИМАНИЕ

Чтобы выполнить вакуумную осушку или полную перезаправку трубопровода хладагента наружного блока, необходимо включить режим вакуумирования (см. параграф «Активация/отключение местной настройки «режим вакуумирования»» [▶ 14]), при этом в контуре хладагента открываются клапаны, обеспечивающие нормальное течение процесса вакуумирования или перезаправки хладагентом.

- Прежде чем приступать к вакуумной осушке или перезаправке, активируйте местную настройку «режим вакуумирования».
- По окончании вакуумной осушки или перезаправки отключите местную настройку «режим вакуумирования».



ВНИМАНИЕ!

Некоторые части контура хладагента могут быть изолированы от других частей из-за наличия компонентов, выполняющих определенные функции (например, клапанов). Поэтому контур хладагента оснащен дополнительными сервисными портами для вакуумирования, сброса давления или повышения давления в контуре.

В случае, если требуется выполнить **пайку** контура, убедитесь в отсутствии давления внутри агрегата. Внутреннее давление необходимо сбросить путем открытия ВСЕХ сервисных портов, указанных на рисунках ниже. Расположение портов зависит от модели.

Расположение сервисных отверстий:

- а Внутреннее сервисное отверстие
- Запорный вентиль с сервисным отверстием (трубопровод жидкого хладагента)
- запорный вентиль с сервисным отверстием (трубопровод газообразного хладагента)

Полная перезаправка системы хладагентом, как правило, подразделяется на следующие этапы:

- 1 Определение количества хладагента для заправки.
- 2 Заправка хладагентом.
- 3 Крепление внутри наружного блока заполненной таблички с информацией о фторированных газах, способствующих парниковому эффекту.

5.4.2 О хладагенте

Данный аппарат содержит фторированные газы, способствующие парниковому эффекту. НЕ допускайте выбросов газа в атмосферу.

Тип хладагента: Хладагент R32

Значение потенциала глобального потепления (GWP): 675

Действующим законодательством может предписываться периодическое проведение проверки на утечку хладагента. За подробной информацией обращайтесь к монтажнику.

ПРЕДУПРЕЖДЕНИЕ: ВОСПЛАМЕНЯЮЩИЙСЯ МАТЕРИАЛ

Хладагент, используемый в этом агрегате, является трудногорючим.

ВНИМАНИЕ!

- Хладагент в блоке умеренно горюч и обычно НЕ вытекает. В случае утечки в помещении контакт хладагента с пламенем горелки, нагревателем или кухонной плитой может привести к возгоранию или образованию вредного газа.
- Отключив все огнеопасные нагревательные устройства и проветрив помещение, свяжитесь с продавцом блока.
- НЕ пользуйтесь блоком до тех пор, пока специалист сервисной службы не подтвердит восстановление исправности узлов, в которых произошла утечка хладагента.

ВНИМАНИЕ!

Оборудование размещается в помещении без постоянно действующих источников возгорания (напр., открытого огня, оборудования, работающего на газе, или действующих электрообогревателей).

ВНИМАНИЕ!

- ЗАПРЕЩАЕТСЯ проделывать отверстия в элементах контура хладагента и подвергать их воздействию огня.
- НЕ допускается применение любых чистящих средств или способов ускорения разморозки, помимо рекомендованных изготовителем.
- Учтите, что хладагент, которым заправлена система, запаха НЕ имеет.

5.4.3 Меры предосторожности при заправке хладагента

ИНФОРМАЦИЯ

См. меры предосторожности и требования, изложенные в разделах «Общие правила техники безопасности» и «Подготовка к прокладке трубопровода хладагента» справочного руководства по монтажу и эксплуатации.

5.4.4 Обозначения: L1~L7, H1, H2

- (а) Имеется в виду, что самая длинная линия на иллюстрации соответствует самой длинной из имеющихся труб, а самый блок, расположенный на рисунке выше остальных – самому высокорасположенному из имеющихся блоков.
 - **L1** Главный трубопровод
 - **L2~L7** Ответвление
 - Н1 Перепад высот между внутренним блоком,
 - установленным выше остальных, и наружным блоком **H2** Перепад высот между внутренними блоками,
 - установленными выше и ниже остальных
 - Комплект для разветвления трубопроводов хладагента

5.4.5 Дозаправка хладагентом

Расчет количества хладагента для дозаправки

Расчет количества хладагента для дозаправки

Если	то
(L1+L2+L3+L4+L5+L6+L7)≤ длины, не требующей дозаправки	Дозаправки хладагента не требуется.
Длина, не требующая дозаправки=	
• 10 м (трубы уменьшенного диаметра)	
• 40 м (трубы стандартного диаметра)	
• 15 м (трубы увеличенного диаметра)	
(L1+L2+L3+L4+L5+L6+L7)> длины, не требующей	Дозаправка хладагента необходима.
дозаправки	На будущее для удобства при техническом обслуживании обведите выбранное количество в таблицах ниже.

ИНФОРМАЦИЯ

За длину трубопроводов принимается наибольшая длина трубопровода жидкого хладагента в одну сторону.

Расчет количества хладагента для дозаправки (R в кг) (спаренный вариант)

C.	Стандартный размер трубок трубопровода жидкого хладагента						
		L1 (m)					
L1:	40~50	40~50 50~55 55~60 60~70 70~80 80~85				80~85	
R:	0,35	0,7 ^(a) 0,55 ^(b)	0,7 ^(a)	1,05 ^(a)	1,4 ^(a)	1,55 ^(a)	

^(a) Только RZAG100~140.

⁽b) Только RZAG71.

Увеличение диаметра трубок трубопровода жидкого хладагента						
		L1 (m)				
L1:	15~20	20~25	25~30	30~35		
R:	0,35	0,7	1,05 ^(a)	1,4 ^(a)		

^(a) Только RZAG100~140.

Расчет количества хладагента для дозаправки (R в кг) (двойной, тройной и двойной спаренный варианты)

1 Расчет величин G1 и G2.

G1 (м)	Общая длина трубопровода жидкого хладагента, состоящего из трубок диаметра <x></x>
	х= Ø9,5 мм (трубки стандартного диаметра)
	x= Ø12,7 мм (трубки увеличенного диаметра)
G2 (M)	Общая длина трубопровода жидкого хладагента, состоящего из трубок Ø6,4 мм

2 Расчет величин R1 и R2.

Если	то
G1>40 M ^(a)	Расчет величин R1 (длина= G1-40 м) ^(а) и R2 (длина= G2) по приведенной ниже таблице.
G1≤40 м ^(a)	R1=0,0 кг.
(при этом G1+G2>40 м) ^(а)	Расчет величины R2 (длина= G1+G2-40 м) по приведенной ниже таблице ^(а) .

⁽a) При использовании трубок увеличенного диаметра: Замените 40 м на 15 м.

C	Стандартный размер трубок трубопровода жидкого хладагента						
	Длина (м)						
	0~10 10~15 15~20 20~30 30~40 40~4					40~45	
R1:	0,35	0,7 ^(a) 0,55 ^(b)	0,7 ^(a)	1,05 ^(a)	1,4 ^(a)	1,55 ^(a)	
R2:	0,2	0,4	0,4	0,6	0,8 ^(a)	1,0 ^(a)	

^(а) Только RZAG100~140.

⁽b) Только RZAG71.

Ув	Увеличение диаметра трубок трубопровода жидкого хладагента							
		Длина (м)						
	0~5 5~10 10~15 15~20 20~				20~30	30~40	40~45	
R1:	0,35	0,7	1,05 ^(a)	1,4 ^(a)	_	_	_	
R2:	0,	35	0,	0,7 ^(a) 1,05 ^(a) 1,4 ^(a) —				

⁽a) Только RZAG100~140.

3 Расчет количества хладагента для дозаправки: R=R1+R2.

Примеры

	1	_				
Компоновка		Д	Дополнительное количество			
			хладагента (R)			
L2=7 m	Сит	гуац	ия: Трубопровод жидкого			
(Ø6.4 mm)	хла	хладагента двойной компоновки,				
L3=5 m (Ø6.4 mm)	состоящий из трубок стандартного					
T (20.4 mm)	диа	диаметра				
L1=45 m (Ø9.5 mm)	1	G1	Всего Ø9,5 => G1=45 м			
RZAG100		G2	Всего Ø6,4 => G2=7+5=12 м			
	2	Сит	уация: G1>40 м			
		R1	Длина=G1-40 м=5 м			
			=> R1=0,35 кг			
		R2	Длина=G2=12 м			
			=> R2=0,4 кг			
	3	R	R=R1+R2=0,35+0,4=0,75 кг			
L2=20 m	Сит	гуац	ия: Трубопровод жидкого			
(Ø6.4 mm) <u>↓•</u>	хла	даге	ента тройной компоновки,			
L3=17 m	coc	тояц	ций из трубок стандартного			
(Ø6.4 mm)	диа	мет	ра			
L4=17 m (Ø6.4 mm)	1	G1	Все Ø9,5=> G1=15 м			
L1=15 m (Ø9.5 mm)		G2	Все Ø6,4 => G2=20+17+17=54 м			
	2	Сит	уация: G1≤40 м (а G1+G2>40 м)			
└ • RZAG125		R1	R1=0,0 кг			
		R2	Длина=G1+G2-40 м=15+54-40=2 9 м			
			=> R2=0,6 кг			
	3	R	R=R1+R2=0,0+0,6=0,6 кг			

Заправка хладагентом: Подготовка

См. «5.3.1 Проверка трубопровода хладагента: Компоновка» [• 10].

Дозаправка хладагентом

<u>/!\</u>

ВНИМАНИЕ!

- Пользуйтесь только хладагентом R32. Другие вещества могут вызвать взрывы и несчастные случаи.
- Хладагент R32 содержит фторированные парниковые газы. Значение потенциала глобального потепления (GWP) составляет 675. НЕ выпускайте эти газы в атмосферу.
- При заправке хладагентом ОБЯЗАТЕЛЬНО надевайте защитные перчатки и очки.

Предварительные условия: Перед заправкой хладагентом обязательно выполните подсоединение и проверку (на герметичность, с вакуумной осушкой) трубопроводов хладагента.

- Подсоедините баллон с хладагентом к сервисным отверстиям запорных клапанов обоих трубопроводов (жидкого и газообразного хладагентов).
- 2 Заправьте дополнительный объем хладагента.
- 3 Откройте запорные клапаны.

5.4.6 Полная перезаправка хладагентом

Расчёт объема полной перезаправки

Расчет количества хладагента для полной перезаправки (кг) трубопровода жидкого хладагента, состоящего из трубок стандартного диаметра

Модель	Д лина (м) ^(a)						
	3~40	40~50	50~55	55~60	60~70	70~80	80~85
RZAG71	3,2	3,55	3,75	_	_	_	_
RZAG100	3,2	3,55	3,9		4,25	4,6	4,75
RZAG125-140	3,7	4,05	4,4		4,75	5,1	5,25

⁽a) Длина=L1 (спаренный вариант); L1+L2 (двойной, тройной варианты); L1+L2+L4 (двойной спаренный вариант)

Расчет количества хладагента для полной перезаправки (кг) трубопровода жидкого хладагента, состоящего из трубок увеличенного диаметра

-	-				
Модель	Длина (м) ^(а)				
	3~15	15~20	20~25	25~30	30~35
RZAG71	3,2	3,55	3,9	_	_
RZAG100	3,2	3,55	3,9	4,25	4,6
RZAG125+140	3,7	4,05	4,4	4,75	5,1

⁽а) Длина=L1 (спаренный вариант); L1+L2 (двойной, тройной варианты); L1+L2+L4 (двойной спаренный вариант)

Длина=L1 (спаренный вариант); L1+L2 (двойной, тройной варианты); L1+L2+L4 (двойной спаренный вариант)

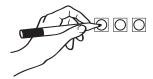
Расчет количества хладагента для полной перезаправки (кг) трубопровода жидкого хладагента, состоящего из трубок уменьшенного диаметра

Модель	Длина (м) ^(а)	
	3~10	
RZAG71+100	3,2	
RZAG125+140	3,7	

⁽а) Длина=L1 (спаренный вариант); L1+L2 (двойной, тройной варианты); L1+L2+L4 (двойной спаренный вариант)

Длина=L1 (спаренный вариант); L1+L2 (двойной, тройной варианты); L1+L2+L4 (двойной спаренный вариант)

Активация/отключение местной настройки «режим вакуумирования»


Описание

Чтобы выполнить вакуумную сушку или полную дозаправку внутренних трубопроводов хладагента наружного агрегата, нужно включить режим вакуумирования. При этом открываются необходимые клапаны в контуре хладагента, что позволяет правильно провести процесс вакуумирования.

Включение режима вакуумирования:

Режим вакуумирования включается кнопками BS* на плате (А1Р) при обязательном считывании показаний на экране 7сегментного дисплея.

Переключайте переключатели И нажимайте кнопки изолированной палочкой (например, шариковой ручкой с надетым колпачком) во избежание прикосновения к деталям, находящимся под напряжением.

Включив питание, но не запуская блок, нажмите кнопку BS1, удерживая ее 5 секунд в нажатом положении.

Результат: Блок переводится в режим настройки, а на экране 7-сегментного дисплея отображается '2 0 0'.

- 2 Нажимайте кнопку BS2, пока не дойдете до окна 2-17.
- 3 Дойдя до окна 2-17, нажмите однократно кнопку BS3.
- Смените настройку на '2' однократным нажатием кнопки BS2.
- 5 Нажмите один раз на кнопку BS3.
- Когда экран дисплея перестанет мигать, еще раз нажмите кнопку BS3 для перехода в режим вакуумирования.

Отключение режима вакуумирования:

По окончании заправки или вакуумирования блока отключите режим вакуумирования:

- Нажимайте кнопку BS2, пока не дойдете до окна 2-17.
- Дойдя до окна 2-17, нажмите однократно кнопку BS3. 2
- 3 Смените настройку на '1' однократным нажатием кнопки BS2.
- Нажмите один раз на кнопку BS3.
- Когда экран дисплея перестанет мигать, еще раз нажмите кнопку BS3 для отключения режима вакуумирования.
- 6 Нажмите кнопку BS1, чтобы выйти из режима настройки.

По завершении работ не забудьте установить на место крышку распределительной коробки и переднюю панель.

14

ОБРАТИТЕ ВНИМАНИЕ

Следите за тем, чтобы во время работы все внешние панели, кроме сервисной крышки распределительной коробке, были закрыты.

закрывайте крышку распределительной коробки перед включением электропитания.

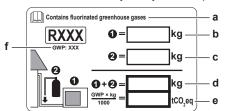
DAIKIN

Заправка хладагентом: Подготовка

См. «5.3.1 Проверка трубопровода хладагента: Компоновка» **[** 10].

Полная перезаправка хладагентом

ВНИМАНИЕ!


- Пользуйтесь только хладагентом R32. Другие вещества могут вызвать взрывы и несчастные случаи.
- Хладагент R32 содержит фторированные Значение потенциала парниковые газы глобального потепления (GWP) составляет 675. HE выпускайте эти газы в атмосферу
- заправке хладагентом ОБЯЗАТЕЛЬНО надевайте защитные перчатки и очки.

Предварительные условия: Прежде чем приступать к полной перезаправке, убедитесь в полной откачке хладагента из проверьте трубопровод хладагента, проложенный системы снаружи наружного блока (на герметичность, с вакуумной осушкой), а также проследите за вакуумной осушкой трубопровода хладагента, проложенного внутри наружного бпока

- Если этого еще не сделано (перед вакуумной осушкой блока), включите режим вакуумирования (см. параграф «Активация/отключение местной настройки «режим вакуумирования»» [▶ 14])
- Подсоедините баллон с хладагентом к сервисному отверстию запорного клапана трубопровода жидкого хладагента.
- Откройте запорный кпапан трубопровода жилкого хладагента.
- Заправьте хладагент в полном объеме.
- Отключите режим вакуумирования параграф (см. «Активация/отключение местной настройки «режим вакуумирования»» [▶ 14]).
- Откройте запорный клапан в контуре газообразного хладагента.

5.4.7 Нанесение этикетки с информацией о фторированных газах, способствующих парниковому эффекту

Заполните этикетку следующим образом:

- Если этикетки с многоязычной информацией о фторированных парниковых газах входят в комплектацию (см. комплект принадлежностей) отклейте этикетку на нужном языке и нанесите ее в месте, помеченном буквой а.
- Количество хладагента, заправленного на заводе (см. паспортную табличку блока)
- С Заправленное дополнительное количество хладагента
- Общее количество заправленного хладагента
- Объем выбросов фторированных парниковых газов в расчете на общее количество заправленного хладагента выражен в тоннах эквивалента СО2.
- ПГП = потенциал глобального потепления

ОБРАТИТЕ ВНИМАНИЕ

В соответствии с действующим законодательством в отношениивыбросов фторированных парниковых газов, общее количество заправленного хладагента указывается как в весовых единицах, так и в эквиваленте CO₂

Формула расчета объема выбросов парниковых газов в тоннах эквивалента CO_2 : Значение GWP хладагента × общее количество заправленного хладагента [в кг] / 1000

Используется значение GWP, указанное в табличке с информацией о заправке хладагентом.

2 Закрепите табличку внутри наружного блока. Для нее предусмотрено место на наклейке с электрической схемой.

5.5 Подключение электропроводки

A	ОПАСНО!	ОПАСНОСТЬ	ПОРАЖЕНИЯ
	ЭЛЕКТРИЧЕСКИ	М ТОКОМ	

ВНИМАНИЕ!

Пользуйтесь ТОЛЬКО многожильными кабелями электропитания.

осторожно!

При использовании кондиционеров с температурной сигнализацией рекомендуется предусмотреть 10-минутную задержку до подачи сигнала о превышении температуры. В нормальном рабочем режиме блок может останавливаться на несколько минут для размораживания или по сигналу термостата.

5.5.1 Соблюдение электрических нормативов

RZAG71~140N*V1B

Оборудование соответствует требованиям EN/IEC 61000-3-12 (Европейский/международный технический стандарт, устанавливающий пределы по гармоническим токам, генерируемым оборудованием, подключенным к низковольтным системам общего пользования, с входным током >16 A и ≤75 A на фазу.).

5.5.2 Рекомендации по подсоединению электропроводки

Моменты затяжки

Позиция	Момент затяжки (Н•м)
M4 (X1M)	1,2~1,8
М4 (заземление)	1,2~1,4
M5 (X1M)	2,0~3,0
М5 (заземление)	2,4~2,9

ОБРАТИТЕ ВНИМАНИЕ

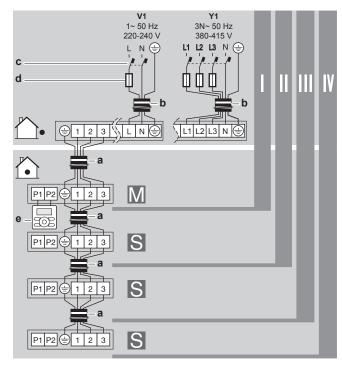
При нехватке места на клеммной колодке пользуйтесь гнутыми круглыми обжимными клеммами.

5.5.3 Характеристики стандартных элементов электрических соединений

Элемент		V1			Y1			
		71	100	125~140	71	100	125	140
Кабель электропитания	MCA ^(a)	18,8 A	23,3 A	28,8 A	12,3 A	15,4 A	15,7 A	15,4 A
	Диапазон напряжения	220~240 B			380~415 B			
	Фазы		1~		3N~			
	Частота	50 Гц						
	Размер проводки	Соответствие законодательным требованиям обязательно						
Соединительные ка	бели	Минимальное сечение кабеля 2,5 мм² под напряжение 230 В						
Рекомендованные предохранители (устанавливаются на месте)		20 A 32 A 16 A						
Автоматический выключатель защиты от замыкания на землю			Соотве	етствие законода	тельным тр	ебованиям об	Бязательно	

⁽a) МСА=Минимальная допустимая нагрузка цепи по току. Приведены максимальные значения (точные значения см. в электрических характеристиках сочетания с внутренними агрегатами).

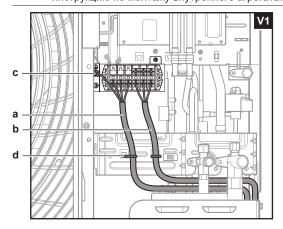
ОБРАТИТЕ ВНИМАНИЕ

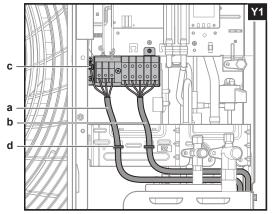

Рекомендуется пользоваться проводами сплошного сечения (одножильными). Если пользуетесь многожильными проводами, слегка скрутите жиле так, чтобы укрепить конец проводника для подсоединения его напрямую к зажиму клеммы ил вставки в круглую обжимную клемму. Подробнее см. раздел «Указания по порядку подключения электропроводки» справочного руководства для монтажника.

5.5.4 Подсоединение электропроводки к наружному агрегату

ОБРАТИТЕ ВНИМАНИЕ

- Следите за соответствием электрической схеме (входит в комплект поставки блока, находится за сервисной панелью).
- Проверьте, НЕ помешает ли электропроводка установить сервисную крышку на место.
- 1 Снимите сервисную крышку.
- Соединительные кабели и электропитание подключаются следующим образом:




- I, II, III, IV Спаренный, двойной, тройной, двойной спаренный варианты
 - **М, S** Главный, подчиненный
 - а Соединительные кабели
 - **b** Кабель электропитания
 - с Автоматический выключатель защиты от замыкания на землю
 - **d** Номинальный ток
 - **e** Пользовательский интерфейс

ИНФОРМАЦИЯ

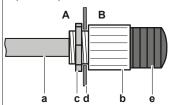
Некоторым внутренним блокам нужен отдельный источник питания, гарантирующий их работу с максимальной производительностью. Смотрите инструкцию по монтажу внутреннего агрегата.

- а Соединительный кабель
- **b** Кабель электропитания
- с Заземление
- Набельная стяжка
- 3 Прикрепив кабели (электропитания и соединительный) кабельной стяжкой к монтажной пластине запорного вентиля, проложите электропроводку, как показано на иллюстрации выше.
- **4** Наметьте и проделайте выбивное отверстие, удаляя точки крепления отверткой с плоским лезвием и молотком.
- 5 Проложите проводку через монтажную раму о подсоединением к ней у выбивного отверстия.

Прокладка проводки через монтажную раму

Выберите один из 3 вариантов:

а Кабель электропитания


Внимание: Соединительные кабели

Внимание: Соединительные кабели прокладываются вместе с трубопроводами хладагента. См. параграф «5.6.1 Завершение монтажа наружного блока» [▶ 17].

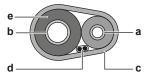
Подсоединение к монтажной раме

При выводе кабелей из блока применяется защитная втулка (РGвставка), которая вставляется в выбивное отверстие.

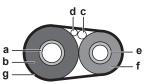
Если не используется кабелепровод, обязательно защитите проводку виниловыми трубками, которые не позволят краям выбивного отверстия порезать провода.

- **А** Внутри наружного блока
- В Снаружи наружного блока
- а Проводка
- **b** Втулка
- с Гайка
- **d** Рама
- е Шланг

ОБРАТИТЕ ВНИМАНИЕ


Проделывая выбивные отверстия, соблюдайте меры предосторожности:

- Старайтесь не повредить корпус и трубопроводы под ним.
- После того, как выбивные отверстия проделаны, рекомендуется убрать заусенцы, а также покрасить края отверстий и прилегающие участки восстановительной краской во избежание образования ржавчины.
- Проводя через выбивные отверстия электрические провода, оборачивайте их защитной лентой во избежание повреждения.
- 6 Установите сервисную крышку на место.
- 7 Подсоедините к линии электропитания предохранитель утечки тока на землю и плавкий предохранитель.


5.6 Завершение монтажа наружного агрегата

5.6.1 Завершение монтажа наружного блока

 Изолируйте и закрепите трубопровод хладагента и кабели следующим образом:

- а Жидкостная линия
- **b** Газовая линия
- с Внешняя обмотка
- d Соединительный кабель (F1/F2)
- е Изоляция
- 2 Установите сервисную крышку.
- 3 Изолируйте и закрепите трубопровод хладагента и кабели следующим образом:

- а Трубопровод газообразного хладагента
- изоляция трубопровода газообразного хладагента
- с Соединительный кабель
- Электропроводка, проложенная по месту установки оборудования (если проложена)
- е Трубопровод жидкого хладагента
- f Изоляция трубопровода жидкого хладагента
- g Отделочная лента
- 4 Установите сервисную крышку.

5.6.2 Проверка сопротивления изоляции компрессора

ОБРАТИТЕ ВНИМАНИЕ

Если после монтажа в компрессоре скопится хладагент, сопротивление изоляции по полюсам может упасть, но пока оно будет составлять не менее 1 МОм, агрегат не выйдет из строя.

- При измерении сопротивления изоляции пользуйтесь мегомметром на 500 В.
- НЕ используйте мегомметр для сетей низкого напряжения.
- 1 Замерьте сопротивление изоляции на полюсах.

Если	то
	Сопротивление изоляции в норме. Операция завершена.
	Сопротивление изоляции не в порядке. Переходите к следующему действию.

2 Включив электропитание, не выключайте его в течение 6 часов

Результат: Компрессор нагреется, в результате чего находящийся в нем хладагент испарится.

3 Еще раз замерьте сопротивление изоляции на полюсах.

6 Пусконаладочные работы

Просьба предоставить заказчикам данные экологичного проектирования согласно требованиям директивы (EU)2016/2281. Эти данные приводятся в справочном руководстве по монтажу и размещаются на сайте Daikin.

ОБРАТИТЕ ВНИМАНИЕ

ВСЕГДА эксплуатируйте блок с термисторами и/или датчиками/реле давления. ИНАЧЕ это может привести к возгоранию компрессора.

6.1 Предпусковые проверочные операции

- 1 После монтажа блока проверьте перечисленное ниже.
- 2 Закройте блок.
- 3 Включите питание блока.
- Полностью изучены инструкции по монтажу как описано в руководстве по применению для установщика.

 Правильно ли смонтированы внутренние блоки.

6 Пусконаладочные работы

Если применяется беспроводной пользовательский интерфейс: Установлена ли декоративная панель внутреннего блока с инфракрасным приемным устройством.
Наружный агрегат установлен правильно.
Проложена ли указанная далее проводка на месте в соответствии с настоящим документом и с действующим законодательством:
 Между местной электрической сетью и наружным блоком
Между наружным и внутренним (главным) блоками
• Между внутренними блоками
НЕТ ли потерянных фаз или перефазировки.
Заземлена ли система надлежащим образом? Затянуты ли клеммы заземления?
Установлены ли предохранители и иные предохранительные устройства по месту монтажа оборудования согласно указаниям, изложенным в этом документе? НЕТ ли перепускных перемычек?
Соответствует ли напряжение электропитания значению, указанному на имеющейся на блоке идентификационной табличке?
В распределительной коробке НЕТ неплотных соединений или поврежденных электрических компонентов.
В норме ли сопротивление изоляции компрессора.
Внутри комнатного и наружного блоков НЕТ поврежденных компонентов и сжатых труб.
НЕТ утечек хладагента.
Установлены трубы надлежащего размера, и сами трубопроводы правильно изолированы.
Запорные вентили наружного агрегата (для газа и жидкости) полностью открыты.

6.2 Порядок выполнения пробного запуска

Изложенный здесь порядок относится только к пользовательскому интерфейсу BRC1E52 или BRC1E53. Если используется любой другой пользовательский интерфейс, см. руководство по его установке.

ОБРАТИТЕ ВНИМАНИЕ

Прерывать пробный запуск НЕЛЬЗЯ.

ИНФОРМАЦИЯ

Подсветка. Пользовательский интерфейс можно включать и выключать без подсветки. Любое другое действие выполняется с включенной подсветкой. После нажатия любой кнопки подсветка будет работать примерно 30 секунд.

1 Выполните подготовительные действия.

Nº	Действие
1	Откройте запорные вентили трубопроводов жидкого и газообразного хладагента, сняв колпачок и повернув шток торцевым гаечным ключом против часовой стрелки до упора.
2	Во избежание поражения током закройте сервисную крышку.

Nº	Действие
3	Для защиты компрессора обязательно включите питание не менее чем за 6 часов до начала операции.
4	С пользовательского интерфейса переведите блок в режим работы на охлаждение.

2 Пробный запуск

Nº	Действие	Результат
1	Откройте главное меню.	Охлажд. Уставка 28°C
2	Нажмите, как минимум, на 4 секунды.	Откроется меню Меню наладчика.
3	Выберите Тест.	Меню наладчика 1/3 Тест Контакты сервиса Местные настройки Ограничение мощности Мин, дифференциал уставок Адрес группы Фаназад Настройка \$
4	Нажмите.	Из главного меню откроется окно Тест. Охлажд.
5	Нажмите не позже, чем через 10 секунд.	Начнется пробный запуск.

- 3 Проверьте состояние операции в течение 3 минут.
- **4** Проверьте направление воздухотока (относится только к внутренним блокам с воздушными заслонками).

Nº	Tařa	D
Mō	Действие	Результат
1	Нажмите.	Скорость/направление Скорость Направлен Позиция 0
2	Выберите Позиция 0.	Скорость/направление Скорость Низкая Пазация 0 Пазация 0 Пазация 0 Пазация 0 Пазация 0
3	Смените положение.	Если воздушная заслонка внутреннего блока двигается, то всё в порядке. В противном случае работоспособность блока нарушена.
4	Нажмите.	Откроется главное меню.

5 Остановите пробный запуск.

Nº	Действие	Результат	
1	Нажмите, как минимум, на 4 секунды.	Откроется меню Меню наладчика.	
2	Выберите пункт Тест.	Меню наладчика Тест Контакты сервиса Местные настройки Ограничение мощности Мин. диференциал уставок Адрес группы С Назад Настройка \$	
3	Нажмите.	Блок вернется в обычный рабочий режим, а на экране откроется главное меню.	

6.3 Коды сбоя при выполнении пробного запуска

Если наружный блок смонтирован НЕВЕРНО, то на экране пользовательского интерфейса могут высвечиваться следующие коды сбоя:

Код неисправности	Возможная причина			
Индикации нет (заданная температура не отображается)	 Разъединение или ошибка в подсоединении проводки (между источником электропитания и наружным блоком, между наружным и внутренними блоками, между внутренним блоком и пользовательским интерфейсом). Перегорел предохранитель на плате наружного блока. 			
E3, E4 или L8	 Перекрыты запорные клапаны. Закупорен воздухозаборник или выброс воздуха. 			
U1 или E7	Обрыв фазы в трехфазном источнике электропитания. Внимание: В таком случае работа оборудования невозможна. Отключив электропитание, тщательно проверьте проводку и поменяйте местами два из трех электрических проводов.			
L4	Закупорен воздухозаборник или выброс воздуха.			
U0	Перекрыты запорные клапаны.			
U2	• Имеет место асимметрия напряжений. • Обрыв фазы в трехфазном источнике электропитания. Внимание: В таком случае работа оборудования невозможна. Отключив электропитание, тщательно проверьте проводку и поменяйте местами два из трех электрических проводов.			
U4 или UF	Межблочное ответвление проводки проложено неверно.			
UA	Наружный и внутренний блоки несовместимы.			

6.4 Местные настройки специально для технического охлаждения

Если система применяется для технического охлаждения, задайте на пульте дистанционного управления перечисленные далее местные настройки:

Местные настройки	Описание	
1	Порядок ввода местных настроек см. в руководстве по обслуживанию.	

7 Утилизация

В этом блоке применяется гидрофторуглерод. По вопросам утилизации блока обращайтесь к дилеру в своем регионе. Закон предписывает производить сбор, транспортировку и утилизацию хладагента в соответствии с нормативами сбора и уничтожения гидрофторуглерода.

ОБРАТИТЕ ВНИМАНИЕ

НЕ пытайтесь демонтировать систему самостоятельно: демонтаж системы, удаление холодильного агента, масла и других компонентов проводятся в СТРОГОМ соответствии с действующим законодательством. Блоки НЕОБХОДИМО сдавать на специальную перерабатывающую станцию для утилизации, переработки и вторичного использования.

8 Технические данные

Подборка самых свежих технических данных размещена на региональном веб-сайте Daikin (в открытом доступе). **Полные** технические данные в самой свежей редакции размещаются на интернет-портале Daikin Business Portal (требуется авторизация).

8.1 Свободное место для техобслуживания: Наружный блок

Сторона всасывания	На иллюстрациях, размещенных на обратной стороне передней обложки данного руководства, размеры зоны обслуживания со стороны всасывания приведены для блока, работающего в режиме охлаждения при температуре 35°С по сухому термометру. Больше места потребуется в перечисленных далее случаях: - Если температура со стороны всасывания регулярно превышает указанную выше. - Если тепловая нагрузка на наружные блоки регулярно превышает расчетную для максимальной производительности.	
Сторона выброса воздуха	Размещать блоки нужно с учетом компоновки трубопроводов хладагента. Если она не соответствует приведенным ниже схемам, обратитесь к продавцу оборудования.	

Одноконтурный блок () | Блоки, расположенные в ряд (

См. "рис. 1" № 2] на обратной стороне передней обложки данного руководства.

(1) Для упрощения обслуживания требуется расстояние ≥250 мм

A,B,C,D Препятствия (стены, защитные панели) **E** Препятствие (перекрытие)

a,b,c,d,e Минимальное пространство для обслуживания между блоком и препятствиями A, B, C, D, E

В Максимальное расстояние от блока до края препятствия Е в направлении препятствия В
 Максимальное расстояние от блока до края

 е_D Максимальное расстояние от блока до края препятствия Е в направлении препятствия D

Блоки, расположенные в несколько рядов (

(1) Для упрощения обслуживания требуется расстояние ≥250 мм

Блоки, установленные друг над другом (не более 2 уровней) (

(1) Для упрощения обслуживания требуется расстояние ≥250 мм

A1=>A2 (A1) Если есть опасность каплеобразования и обледенения в промежутке между верхним и нижним блоками...

(A2) установите между ними перекрытие. Во избежание образования наледи на поддоне верхнего блока установите этот блок над нижним на достаточной высоте.

B1=>B2 (B1) Если нет опасности каплеобразования и обледенения в промежутке между верхним и нижним блоками...

(B2) перекрытие устанавливать не обязательно, но промежуток между верхним и нижним блоками необходимо герметично перекрыть во избежание повторного всасывания воздуха через днище блока.

Н_U Высота блока

I_в,H_D Высота препятствий В и D

Перекройте герметично низ монтажной рамы во избежание повторного всасывания воздуха через днище блока.

2 Можно установить не более двух блоков. Недопустимо

ва.

8.2 Схема трубопроводов: Наружный агрегат

8.3 Электрическая схема: наружный агрегат

Электрическая схема поставляется с блоком и располагается на внутренней стороне сервисной крышки.

(1) Монтажная схема

Английский	Перевод
Connection diagram	Монтажная схема
Only for ***	Только для ***
See note ***	См. примечание ***
Outdoor	Наружный блок
Indoor	Внутренний блок
Upper	Наверху
Lower	Внизу
Fan	Вентилятор
ON	вкл
OFF	выкл

(2) Компоновка

Английский	Перевод
Layout	Компоновка
Front	Передняя часть
Back	Задняя часть
Position of compressor terminal	Расположение клеммы компрессора

(3) Примечания

Английский	Перевод
Notes	Примечания
+	Подсоединение
X1M	Связь внутреннего блока с наружным
	Заземление

Английский	Перевод	
	Оборудование, приобретаемое отдельно	
1	Несколько вариантов проводки	
	Защитное заземление	
	Проводка по месту установки	
	Электропроводка в зависимости от модели	
	Дополнительно	
[<u>]</u>	Распределительная коробка	
	Системная плата	

ПРИМЕЧАНИЯ:

- На наклейке со схемой электропроводки (сзади передней панели) показано, как пользоваться переключателями BS1~BS3 и DS1.
- При эксплуатации оборудования не закорачивайте предохранительные устройства S1PH S1PLand Q1E.
- 3 Указания по подключению электропроводки к X6A, X28A и X77A см. в таблице совместимости и в инструкциях по дополнительному оборудованию.
- 4 Цвета: BLK: черный, RED: красный, BLU: синий, WHT: белый, GRN: зеленый

(4) Обозначения

Английский	Перевод	
Legend	Обозначение	
Field supply	Оборудование, приобретаемое отдельно	
Optional	Дополнительно	
Part n°	Артикул	

8 Технические данные

Английский	Перевод	V*R (A1P) (только V1)	Диодный модуль
Description	Описание	V1) V1R, V2R (A1P)	Диодный модуль
A1P	Плата (системная)	(только Ү1)	
A2P	Печатная плата (фильтр подавления помех)	V3R, V4R (A1P) (только Y1)	Блок питания БТИЗ
A3P *	Плата (обязательно)	X1M	Клеммная колодка
BS1~BS3 (A1P)	Кнопочный выключатель	Y1E~Y3E	Электронный расширительный клапан
C1~C5 (A1P) (только Y1)	Конденсатор	Y1S	Электромагнитный клапан (четырехходовой)
DS1 (A1P)	DIP-переключатель	Z*C	Фильтр подавления помех (с
E1~3 (A1P)	Разъем		ферритовым сердечником)
E1H *	Нагреватель поддона (опция)	Z*F	Фильтр подавления помех
F*U *	Плавкий предохранитель	L*, L*A, L*B, N, NA,	Разъем
HAP (A1P)	Светодиодный индикатор диагностики (зеленый)	NB, E*, U, V, W, X*A (A1P~A2P)	
К1М, К3М (А1Р) (только Y1)	Электромагнитный контактор		
K1R (A1P)	Магнитное реле (Y1S)		
K4R (A1P)	Магнитное реле (Е1Н)		
K10R, K13R~K15R (A1P)	Магнитное реле		
K11M (A1P) (только V1)	Электромагнитный контактор		
L1R (только Y1)	Реактор		
M1C	Электромотор компрессора		
M1F	Электромотор вентилятора		
ПКМ (A1P) (только V1)	Поправка к коэффициенту мощности		
PS (A1P)	Импульсный источник питания		
Q1DI	Предохранитель утечки тока на землю (30 мA)		
Q1E	Защита от перегрузки		
R1~R8 (A1P) (только Y1)	Резистор		
R1T	Термистор (воздух)		
R2T	Термистор (выброс)		
R3T	Термистор (всасывание)		
R4T	Термистор (теплообменник)		
R5T	Термистор (теплообменник средний)		
R6T	Термистор (контур жидкого хладагента)		
R7T	Термистор (пластин радиатора)		
R8 (A1P) (только V1)	Резистор		
RC (A1P) (только Y1)	Приемник сигнала		
S1PH	Реле высокого давления		
S1PL	Реле низкого давления		
SEG1~SEG3	7-сегментный дисплей		
TC1 (A1P) (только V1)	Цепь передачи сигнала		
TC (A1P) (только Y1)	Цепь передачи сигнала		
V1 (A2P)	Варистор		
V1D (A1P) (только V1)	Диод		
V1D,V2D (A1P) (только Y1)	Диод		

4P695306-1 B 00000000

DAIKIN INDUSTRIES CZECH REPUBLIC s.r.o.

U Nové Hospody 1155/1, 301 00 Plzeň Skvrňany, Czech Republic